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Abstract— We present a new method of fault 

diagnosis based on the analysis of the Radial Vibration 

Analytic Signal (RVAS). Calculations are applied to 

vibration signals generated by a defected bearing of 

the induction motor. The calculation method consists 

of two main parts: the first is the Hilbert transform of 

the radial vibration normalized and compared with 

the module of the RVAS. The second consists of the 

extraction of feature form vectors using the Signal 

Class Dependent Time Frequency Representation 

(TFRSCD). The Fisher contrast is used to design the non 

parametrical kernel of TFRSCD. The feature vector size 

is optimized using Particle Swarm Optimization 

technique (PSO). The  results  are  validated  on  a  

5.5-kW induction motor test bench. 
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I. INTRODUCTION 

The field of fault diagnosis is heading towards the 

development of more reliable and powerful machine 

health monitoring schemes. Today’s industry strives to 

improve performance and profitability while maintaining 

and improving safety.  Thus, very expensive scheduled 

maintenance is performed in order to detect machine 

problems before they may result in catastrophic failures 

[1]. In this light, several monitoring techniques have been 

developed to detect induction machine faults. Among all 

of these, those relying on the examination of the 

frequency component in the motor current spectrum, 

called Motor Current Signature Analysis (MCSA) which 

has gained attention from researchers. Other techniques 

are based on vibration analysis, acoustic noise 

measurement, torque profile analysis, temperature 

analysis, and magnetic field analysis [2]. These 

techniques require sophisticated and expensive sensors, 

additional electrical and mechanical installations, and 

frequent maintenance. In addition to recent techniques 

based on artificial intelligence approaches such as 

artificial neural networks [3- 8], fuzzy logic [9], wavelets 

[10], etc… 

Generally, diagnosis systems use signals either in time 

or frequency domain. In our approach, both time and 

frequency are combined in order to extract much 

information about the health condition of the machine. 

Time–frequency analysis of the motor current makes 

signal properties, related to fault detection, more evident 

in the transform domain [11]. 

Usually, the objective of time–frequency research is to 

create a function that represents the energy density of a 

signal simultaneously in both time and frequency, for 

classification purpose. It is not necessarily desirable to 

accurately represent the energy distribution of a signal. 

In fact, such a representation may conflict with the 

goal of classification, generating a TFR that maximizes 

the separability of TFRs from different classes. It may be 

advantageous to design TFRs that specifically highlight 

differences between classes [12-13]. 

We propose to design and use the classifier directly in 

the ambiguity Doppler delay plane. Since all TFRs can be 

derived from the ambiguity plane, no a priori assumption 

is made about the smoothing required for accurate 

classification. Thus, the smoothing quadratic TFRs retain 

only the information that is essential for classification. 

This classification allows us to proceed to an 

optimization routine based on particle swarm technique to 

find the appropriate size of the feature vectors in order to 

reduce calculation time and keep the signal with relevant 

information within the vectors.  

The classification procedure is based on the design of 

an optimized TFR from a time–frequency ambiguity 

plane in order to extract the feature vector. The optimal 

size of the feature vectors is obtained using PSO 

algorithm [14]. The PSO technique can generate high-

quality solutions within shorter calculation time and 

stable convergence characteristic than any other stochastic 

methods [15-16]. 

The goal of this work is the realization of an accurate 

diagnosis system based on the analysis of the radial 

vibration signal caused by bearing faults.   

II. Hilbert transform of Radial vibrations  

Since we cannot directly use the vibration signals due 

to their very low values. We present a method for 

preprocessing before the use of the TFRSCD. The method 

involves the calculation of a very interesting parameter: 

the dispersion parameterξ of the point cloud. It is this 

parameter that allows the calculation of the TFRSCD and 

the extraction of the feature vectors.  

Radial Vibration Analytic Signal (RVAS) method uses 

the principle of the analytical signal obtained by Hilbert 

transform. The Hilbert transform in the time domain 

corresponds to a 2π -phase shift of the Fourier 
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transform terms. Hilbert transform finds a companion 

function y(t) for a real function x(t) so that  :  

iy(t) x(t)z(t) += .   The Hilbert transform of a 

signal ( )tx can be written as: 

)(~)(~)(~)( ImRe txjtxtxtx
HT +=→                (1) 

       

where )(~
Im tx  represents the Hilbert transform of the 

signal )(~
Re tx . The signal )(~ tx , meanwhile, is commonly 

called analytic signal. 

The amplitude )(tA  of the time signal )(tx  is calculated 

using the following relation: 

 

( ) ( )2
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2

Re )(~)(~)( txtxtA +=                                 (2)                                                                                   

Its phase )(tϕ  is calculated using the relation: 
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Applying this to our case for the radial vibration signal 

(t)VR , we get : 
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Where  )(
~

Im
tVR

represents The Hilbert transform of the  

Radial vibration signal 
Re

~
RV . And )(tVR

is usually 

called the Radial Vibration Analytic Signal (RVAS).  

The amplitude is: 
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The real and imaginary radial vibrations are normalised to 

the module of the RVAS : 
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The vibrations average is given by: 
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The normalised characteristic
Im

~
RV ′ ,

Re

~
RV ′  consists of a 

cloud of 
RV

N ~′  points. These points represent in a 

normalised way the instantaneous evolution of the radial 

vibrations. 

The parameter ξ , that represents the cloud dispersion of 

these points is defined as :. 

T
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Where kA  is a point with coordinates 

( )(
~
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kVR

′ , )(
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Im
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′  ) 

The parameter ξ  is relatively sensitive to different 

states of the machine such as defected bearings, broken 

bars or unbalanced feed. 

 

II. FEATURE EXTRACTION USING TFR 

For further details, we recommend the reader to 

review our previous works [17]-[18].  

The characteristic function for each TFR 

is ),(),( τηϕτηA , η  represents the discrete frequency 

shift and τ represents the discrete time delay. This means 

that the optimal-classification representation TFRi can be 

obtained by smoothing the ambiguity plane ),( τηA with 

an appropriate kernel optϕ , which is an optimal 

classification kernel. The problem of designing the TFRi 

becomes equivalent to designing the optimal 

classification kernel ),( τηϕ
opt

. This method, used to 

design kernels (and thus TFRs), optimizes the 

discrimination between predefined sets of classes. 

Features can be extracted directly from 

),(),( τηϕτη
opt

A instead of the optimal classification 

TFRi. This shortcut simplifies the computation 

complexity of the feature extraction by reducing the 

calculations. 

The TFRSCD does not allow us to limit the size of the 

feature vector. To solve this problem we have used the 

PSO algorithm to minimize the sizes of the feature 

vectors without affecting the relevance of these vectors. 
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III. OPTIMIZATION USING PSO ALGORITHM 

One objective of our approach is to minimize the size 

of the signal by a feature vector of a very small size 

without losing relevant information of the signal. Hence, 

an optimum size of this vector provides a good 

compromise between the relevance of information and 

time consuming cost. In this work, the size used in the 

previous calculations is determined using PSO algorithm. 

A. Particle Swarm Optimization (PSO) 

The main advantages of PSO algorithm are 

summarized as: simple concept, easy implementation, 

robustness to control parameters, and computational 

efficiency when compared with mathematical algorithms 

and other heuristic optimization techniques. In PSO, two 

different definitions are used: the individual best and the 

global best. As a particle moves through the search space, 

it compares its fitness value at the current position to the 

best fitness value it has ever attained previously. The best 

position that is associated with the best fitness 

encountered so far is called the individual best or pbest. 

The global best, or gbest, is the best position among all of 

the individual’s best positions achieved so far (Fig. 1).  

Using the gbest and the pbest, the i
th

 particle velocity is 

updated according to the following equation [16]: 

1

1 1 2 2
( ) ( )k k k k

i i i i i
v w v c r a n d p b e s t s c r a n d g b e s t s+ = + × − + × −  

(12) 

Based on the updated velocities, each particle changes its 

position according to the equation: 

1 1k k k

i i i
s s v+ += +  (13) 

Where w is a weighting function, cj are acceleration 

factors and rand is a random number between 0 and 1. 

The following weighting function is usually utilized:  

max min

max

max

w w
w w iter

iter

−
= − ×  

 

(14) 

 

Where wmax is initial weight, wmin the final weight, 

itermax is the maximum iteration number, and iter is the 

current iteration number. 

The parameters used in this work are taken as follows 

[19-22]:  

c1=c2=2.05; wmin =0.1; wmax =0.9. 

        Selection of maximum velocity: 

At each iteration step, the algorithm proceeds by 

adjusting the distance (velocity) that each particle moves 

in every dimension of the problem hyperspace. The 

velocity of the particle is a stochastic variable and is, 

therefore, subject to creating an uncontrolled trajectory, 

making the particle follow wider cycles in the problem 

space. In order to damp these oscillations, upper and 

lower limits can be defined for the velocity iv : 

maxmax

maxmax

vvthenvvelseif

vvthenvvif

ii

ii

−=−<

=>
 (15) 

Generally, the value of maxv is selected empirically, 

according to the characteristics of the problem. It is 

important to note that if the value of this parameter is too 

large, then the particles may move erratically, going 

beyond a good solution; on the other hand, if maxv is too 

small, then the particle’s movement is limited and the 

optimal solution may not be reached. 

Research work performed by Fan and Shi [23] have 

shown that an appropriate dynamically changing maxv  

can improve the performance of the PSO algorithm. In the 

simulation part and to ensure a uniform velocity we fixed 

maxv according to many run tests. 

    Integer PSO formulation: 

In the case where integer variables are included in the 

optimization problem such as a size of feature vector, the 

PSO algorithm can be reformulated by rounding off the 

particle’s position to the nearest integer. Mathematically, 

(12) and (13) are still valid, but once the new particle’s 

position is determined in the real-number space, the 

conversion to the integer number space must be done. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1: Principle of particle swarm method  

 

B. Fitness Function 

For searching an optimized size of the feature vector 

based on PSO algorithm, a fitness function is needed. In 

this work, we consider the variance calculated for every 

size of the feature vector as the fitness for this size and the 

goal is to optimize this fitness. 

 
IV. CALCULATION PROCEDURE 

 

The procedure of calculation consists of two main parts, 

the first part involves the extraction of relevant points 

from the radial vibration signals and their arrangement in 

vectors called feature vectors. This extraction is carried 

out by the RTF [24]. Since not all of the vector points are 

interesting, we proceed to the optimization of the vector 

using the PSO algorithm. Finally, only the first values are 

retained, the values that possess larger Fisher contrasts. 

The signals recorded by the acquisition system via three 

accelerometers are: the axial, radial and vertical vibration 

signals. In practice, the vibration signals have very low 

values; we conduct a priori preprocessing of the vibration 

data. 
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V. EXPERIMENT RESULTS 

The experimental data are collected at Ampère 

Laboratory, University of Lyon1. The experimental bench 

shown in Fig. 2 consists of a three-phase squirrel cage 

induction-motor Leroy Somer LS 132S, IP 55, Class F, T 
◦
C standard = 40 

◦
C. The motor is loaded with a powder 

brake. Its maximum torque (100 Nm) is reached at rated 

speed. 

This brake is sized to dissipate a maximum power of 

5kW. The wear obtained on the bearings is a real one 

(Fig. 3).  

 

 

 

Fig. 2: The 5.5 kW motor coupled with load  

(powder brake). 

 

Fig. 4 shows the device in place for the acquisition of 

signals: machine set up and acquisition of signals. The 

vibration signals sampling rate is 20 kHz. The number of 

samples per signal rises to N=100000 samples on an 

acquisition period of 5s. The data acquisition set consists 

of vibration signal recording at different levels of load 

(0%, 25%, 50%, 75% and 100%). Different operating 

conditions for the machine were considered, namely: 

healthy, bearing fault… etc.  

 

 
 

Fig. 3: Accelerated wear of the bearings by immersion in acid 

 

Each signal is sampled at a downsampling rate of 50. 

Only the range of the required frequencies is preserved, 

hence, the signal dimension is greatly reduced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.4: Signal Acquisition System 

 

 The dimension of ambiguity plane is 200×200 = 

40000 points; by considering symmetry compared to the 

origin, we retain only the quarter of ambiguity plane, 

which corresponds to N = 10000. Figures 5, 6, 7 and 8 

represent examples of RVAS for healthy and faulted 

machines. At the first glance, these figures do not exhibit 

any interesting feature. From these representations, we 

cannot extract any relevant information. For this reason, 

we proceed to the pre-processing of data and use of 

additional calculation methods mentioned below. 

 

 

 

 
 

 

 

 

 

 

 

Fig.5: Radial vibration signal of a healthy 0% loaded machine  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Radial vibration signal of a healthy 75% loaded machine 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Radial vibration signal of a 0% loaded bearing faulted  

 

machine  
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Fig. 8: Radial vibration signal of a 75% loaded  bearing faulted 

machine 

 

Figure 9 shows a representation of the cloud   

dispersion of the RVAS points of a healthy and bearing 

faulted machines for different levels of load (0%, 25%, 

50%, 75%, 100%). 
 

 

 

 

 

 

 

 

 

 

Fig. 9: Cloud dispersions of the RVAS. 

We note in Figure 9 that the parameter ξ confirms the 

separability between two classes (healthy bearing class and 

faulty bearing class). We also note that the parameter ξ is 

not very sensitive to changes in the level of charge. 

In this section we present the severity as a function of 

time and frequency for the radial vibrations for different 

load levels. 

 

In this work, the objective of introducing the PSO is the 

optimization of the feature vectors size, by considering 

the variance as fitness function. Before the optimization 

procedure, the 10 feature vectors consisted of 10 

elements. Using the PSO, the sizes of these vectors are 

reduced to 2 elements for each vector. Figures 10, 11 and 

12 show the optimized feature vectors. 

Fig10 : Optimized feature vector1 

 

 

 

 

 

 

 

 

 

Fig11 : Optimized feature vector2 

 

 

 

 

 

 

 

 

Fig12 : Optimized feature vector3 

VI. CONCLUSION 

In this paper, we have proposed a new method for fault 

diagnosis of induction machine based on the analysis of 

the radial vibration signal. Before the extraction of the 

feature vectors using the TFRSCD, a data preprocessing is 

needed due to the low values of the vibration signal. This 

method involves the introduction of the cloud points 

dispersion parameter ξ, that calculates the Signal Class 

Dependent Time Frequency Representation "TFRSCD" and 

the extraction of the feature vectors.  We have introduced 

the PSO algorithm to optimize the sizes of the feature 

vectors. Since the sizes of the feature vectors are 

dramatically reduced to two points, this will significantly 

help optimize calculation time.  
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